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Abstract. Typical censoring models have mass-points at the upper, lower, or both
tails of an otherwise continuous outcome distribution. In contrast, we consider a
censoring model with a mass-point in the interior of the outcome distribution. We
refer to this mass point as “bunching” and use it to estimate model parameters. For
example, economic theory suggests that for increasing marginal income tax rates,
many taxpayers will report income exactly at the threshold where the tax rate
increases. This translates into a censoring model with bunching at the threshold.
The size of this mass point of taxpayers can be used to estimate an elasticity param-
eter, which summarizes taxpayers responses to taxes. This article introduces the
command bunching, which implements new non-parametric and semi-parametric
identification methods for estimating elasticities developed by |Bertanha, McCal-
lum, and Seegert| (2021)). These methods rely on weaker assumptions than what
are currently made in the literature and result in meaningfully different estimates
of the elasticity.

Keywords: st0001, bunching, bunchbounds, bunchtobit, bunchfilter, partial iden-
tification, censored regression, income elasticity, tax

1 Introduction

Censoring models apply to distributions of an outcome variable that are continuous
except for a mass-point at the upper, lower, or both tails of the distribution. This
paper considers models where the mass-point occurs in the interior of the outcome
distribution. We refer to this class of models as “mid-censoring models.” Although we
use the adjective “mid-censoring”, the mass point may be at any point in the interior
of the support of the distribution of outcomes.

Previously developed methods use such a mass point, often called “bunching”, to
estimate model parameters. For example, economic theory suggests that for increasing
marginal income tax rates, many taxpayers will report income exactly at the threshold
where the tax rate increases. This translates to a mid-censoring model with a mass-
point in the interior of the distribution of reported income. The size of this mass point
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can be used to identify an important parameter of the censoring model, which is known
to economists as an elasticity parameter. In this context, the elasticity parameter de-
scribes the percent change in reported income in response to a percentage point change
in marginal income tax rate. More specifically, an elasticity of 0:5 means that taxpayers
reduce their reported income (labor supply) by 0.5 percent for each 1 percentage point
increase in marginal income tax rates. Section [3.1| provides simulated data and a nu-
merical example interpreting this elasticity in more detail. In the rest of this paper, we
use “bunching” to refer to a mass point in the interior of an outcome distribution, and
“bunching methods” or “bunching estimator” to refer to the statistical methods that
recover elasticity parameters from data that exhibit bunching.

Using bunching to estimate elasticities began with [Saez| (2010)), |Chetty et al.|(2011]),
and Kleven and Waseem| (2013)). Following these influential papers, bunching methods
became a popular way to estimate elasticities in a variety of settings ranging from
electricity demand (Ito]2014), real estate taxes (Kopczuk and Munroe [2015), labor
regulations (Garicano et al.|[2016)), and prescription drug insurance (Einav et al.2017)
to marathon finishing times (Allen et al.[2017), attribute-based regulations (Ito and
Sallee|[2018), education (Dee et al.2019; |Caetano et al[2020a)), minimum wage (Jales
2018; (Cengiz et al.|[2019)), and air-pollution data manipulation (Ghanem et al.|[2019)),
among others. Differences in mass point sizes across groups has been exploited as
the first stage in a two-stage approach to control for endogeneity (Chetty et al.|[2013}
Caetano 2015 |Grossman and Khalil 2020). Bunching has also been used for causal
identification in [Khalil and Yildiz (2020), Caetano and Maheshri| (2018)), Caetano et al.|
(2019), |Caetano et al.| (2020b), and Jales and Yu| (2017) connects bunching to regression
discontinuity (RD). Lastly, Kleven| (2016) conducts a detailed review of the bunching
literature.

This paper introduces a new Stata command, bunching, which utilizes assumptions
that are weaker than current bunching methods. The command bunching is a wrap-
per function for three other commands. The first of those commands is bunchbounds,
which estimates upper and lower bounds on the bunching elasticity using a partial-
identification approach. The second is bunchtobit, which uses a semi-parametric
method with covariates for point identification. The third is bunchfilter, which fil-
ters friction errors from the dependent variable before applying either bunchbounds or
bunchtobit.

The statistical foundations for these commands are developed by |[Bertanha, McCal-|
lum, and Seegert| (2021)). That paper introduces multiple methods to recover elasticities
from bunching. Each method relies on different assumptions to achieve identification of
the elasticity. Since these are assumptions about an unobserved distribution, it is not
possible to determine which assumption is correct. However, it is possible to check if
estimates relying on different assumptions are robust across assumptions. In practice,
we recommend that researchers use the bunching package to employ different estima-
tion methods and check that elasticity estimates they recover are stable across those
methods.
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2 Bunching estimators

The application of bunching methods utilized by [Bertanha, McCallum, and Seegert
(2021) and this paper derives from bunching behavior caused by progressive marginal
income taxes, as in |Saez (2010)). Formally, agents maximize an iso-elastic quasi-linear
utility function of total consumption (or disposable income) and labor, which results in
a data generating process (DGP) for optimal reported taxable income as follows

8
="so +n;; if Ny <n(k;";so)

vi=_ki ifn(k;"so) n; m(k;";s1) (1)
“Usy4ng; ifng >n(k;"se):

in which y; is the log of reported income, n; is the log of unobserved heterogeneity of
agent I, " is the elasticity parameter of interest, the log of the slope of the piecewise-
linear constraint changes from Sp to S; at the log of the kink point K, and s; < Sg.
All logs in this paper are natural logs. The restriction S; < Sp guarantees concavity
of the budget set, which is fundamental for the solution in Equation [I} In the original
tax application, sj = log(1 tj), j 2 0;1g, in which tj is the marginal tax rate and
tp < t;. The expressions for the thresholds that determine the three cases in Equation
are n(k;";sp) =k "sgand n(k;";s1) =k "s;.

We use utility maximizing agents and income-taxes to motivate Equation [1| and for
exposition of the command throughout the rest of this paper. Nevertheless, the methods
developed by |Bertanha, McCallum, and Seegert| (2021)), as well as the bunching package,
apply to any data set generated by Equation [l We emphasize that any data must be
transformed into units that satisfy Equation In the income-tax example, this is
accomplished by taking logs of the outcome variable, kink, and slopes.

Our methods are applicable to non-tax data. For example, Bitler et al. (2021)
study the Supplemental Nutrition Assistance Program (SNAP), in which low-income
individuals receive benefits for food purchases as a function of labor income, y;. The
benefit is a constant amount for labor income less than a known value, k, but decreases
linearly after that. This reduction in benefits creates a piece-wise linear budget set over
total consumption and labor income with a kink. At y; = K, the log of the slope changes
from sg to S with s; < s (see [Bitler et al|[2021, Figure 1). In this case, bunching
methods identify the elasticity of labor supply, ", with respect to the benefit reduction
rate.

Another non-income-tax application is [Ito| (2014)), who studies consumption of elec-
tricity in Southern California. Electricity price per kilowatt-hour (kWh) changes as a
function of quantity of consumption in kWh (see Figure 3 in his paper). This piece-wise
linear pricing scheme creates a budget set over disposable income and electricity con-
sumption with kinks, and bunching methods identify the demand elasticity with respect
to electricity price.

Piece-wise linear constraints frequently exhibit several kinks at different locations.
bunching can be applied to each kink separately as long as the constraint does not
have a discontinuous jump —often called a “notch” —preceding the kink under study.
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Appendix B of Bertanha et al.| (2021) provides a general solution to a model with
multiple kinks and notches and Section \3 Identi cation" of Bertanha et al. |(2021)
discusses inference for multiple kinks.

Our estimation methods rely on Equation[]], which maps the continuously distributed
unobservedn; into a mixed continuous-discrete observed distribution fory; for given
values of (So; s1; k;"). For higher values ofn; , higher values ofy; will be observed except
whenn; falls inside the bunching interval, that is, [n (k;"; so) ; T (k;";S1)], in which case
yi remains constant and equal tok. Therefore, (1) leads to bunching in the distribution
of y; at the kink point k. In other words, the distribution of y; has a mass point atk,
P(yi = k) > 0, but is continuous otherwise. The mass of the point atk depends on the
size of the bunching interval according to

B P(yi=k)=P(n(k;"so) n n(k"s1) 2
=Fn (M(k;"s1)) Fa (n(k;";s0));

in which F,, is the cumulative distribution function (CDF) of the unobserved n .

The data and model formally consist of ve elements: (i) the CDF of the outcome
Fy, (ii) the kink point Kk, (iii) the slopes of the budget constraint on the left, so, and
right, s;, of the kink point; (iv) the CDF of unobserved heterogeneity F, , and (v)
the elasticity ". Equation [1f maps elements (ii){(v) into the observed CDF, F,. The
researcher observes elements (i){(iii), but not the last two elementsfF, and".

Original bunching estimators recover" in two steps (Saez 2010; Chetty et al. 2011).
First, they assume a speci c functionF,, over the bunching interval. Second, they invert
Equation 2 to recover " using their assumption about F, . The methods developed
by Bertanha, McCallum, and Seegert (2021) that are implemented by thebunching
command are quite di erent than these original approaches.

bunching implements two novel identi cation strategies for the elasticity using a
mass point at a kink.

The rst strategy partially identi es the elasticity by assuming Lipschitz continuity
and is implemented by bunchbounds In other words, it assumes that the probability
density function (PDF) of the unobserved heterogeneity has bounded slope magnitude.
How this assumption recovers the elasticity is as follows. The observed bunching mass
equals the area under the the heterogeneity PDF inside an interval. The size of this
bunching interval is a function of the unknown elasticity parameter. The highest and
lowest values for possible PDFs inside the bunching interval are set by the Lipschitz
bound on the slope magnitude of the PDFs. With a xed bunching mass, these PDF
bounds determine the maximum and minimum widths of the bunching interval and
imply lower and upper bounds for the elasticity. bunchbounds has two particularly
valuable features. First, when bunching is observed the elasticity lower bound must be
positive. Second, the bunching estimator based on the trapezoidal approximation (Saez
2010) is always within the bounds (partially identi ed set of elasticities).

The second strategy rewrites Equation 1 as a mid-censored regression model and is
implemented by bunchtobit . The method assumes that the unobserved heterogeneity
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conditional on covariates follows a normal distribution, but we prove that conditional
normality is not required for consistency of the elasticity when the unconditional dis-
tribution of income is correctly speci ed. This approach e ectively assumes that the
unconditional distribution of heterogeneity belongs to a semi-parametric family of nor-
mal mixtures. Conditional normality implies a Tobit model that has a globally concave
log likelihood that is easy to maximize. bunchtobit also truncates the sample using a
sequence of smaller windows around the kink point. Consistency of the elasticity using
these smaller windows requires weaker assumptions on the distribution of heterogeneity
because the model tends to t the unconditional distribution of income better as the
window size decreases. To the best of our knowledge, this is the rst bunching estima-
tion strategy that utilizes covariates and semi-parametric assumptions to recover the
elasticity. Covariates can control for a substantial amount of individual heterogeneity
and bunchtobit only places assumptions on the remaining portion of heterogeneity that
is unobserved. In general, researchers should prefer methods that control for observable
heterogeneity using covariates over methods that omit covariates and instead restrict
both observed and unobserved heterogeneity.

Many datasets have friction errors which imply that the bunching mass is dispersed
in a small interval near, instead of exactly at, the kink. When friction errors are present,
they must rst be Itered out before a bunching estimation method can be applied. The
procedure implemented bybunchfilter is a practical way of removing friction errors
and works well when 1) the researcher has an accurate prior on the support of the
friction error distribution, 2) the friction error a ects non-bunching individuals more
than it a ects bunching individuals, or 3) the friction error has a small variance. A
more general Itering method requires deconvolution theory, which is an active area of
research.

2.1 The bunchbounds command

bunchboundsuses bunching to partially identify the elasticity of a response variable with
respect to changes in the slope of the budget set. The syntax, options, and description
of this command are as follows:

Syntax for bunchbounds

bunchbounds depvar if in  weight , kink( #) sO(#) s1(#) m(#) nopic
savingbounds( lename][, replacd)
depvar must be one dependent variable (the response in logs in many applications).

Kink( #) is the location of the kink point and must be a real number in the same units
as the response variable.

sO(# ) is a real number. In many applications, it is the log of the slope before the kink
point.
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s1l(#) must be a real number that is strictly less than sO(# ). In many applications,
it is the log of the slope after the kink point.

m@# ) is the maximum magnitude of the heterogeneity PDF slope and must be a strictly
positive real number.

Entries for depvar, kink( # ), sO(# ), s1(#), and m@ ) are required, whereas options
inside the square brackets are not required.

Options for bunchbounds

if and in restrict the working sample, like many other Stata commands.
weight follows Stata's weight syntax and only allows frequency weights fweight .
nopic suppresses displaying graphs. The default is to display graphs.

savingbounds( lename][, replacg) saveslename.dta with coordinates of the partially-
identi ed set as a function of the slope magnitude of the heterogeneity distribution.
Usereplaceif lename.dta already exists.

Description for bunchbounds

The user enters the name of the response variable, the location of the kink point, the
slopes before and after the kink point, and the maximum slope magnitude of the het-
erogeneity PDF. Before applying the command, all of these entries must be transformed
into units that satisfy the DGP from Equation 1. For example, in the tax setting of Saez
(2010), dollars of taxable income and the dollar value of the kink point are transformed
by taking logs, and the slopes are the log of one minus the respective marginal tax.

bunchbounds computes the maximum and minimum values of the elasticity that
are consistent with the slope restriction on the PDF speci ed in m@# ), the observed
distribution of the response variable, and values of the PDF of the response variable
evaluated at the left and right limits approaching the kink. These limits are computed
non-parametrically using the method of Cattaneo et al. (2020) as implemented by their
Stata packagelpdensity , discussed by Cattaneo et al. (2021). Thus, the user needs to
install Ipdensity before usingbunchbounds

It is important to emphasize that the true value of the slope magnitude is unknow-
able but bunchboundsprovides four sample values as suggestions for the user. The rst
two sample values are estimated using the continuous part of the distribution. Specif-
ically, minimum and maximum slope magnitude sample values are constructed from a
histogram of the dependent variable that excludes the kink point and uses a bin width
that is half of the default bin width for the command histogram . The third sample
value is the maximum slope magnitude that results in a nite upper bound on the elas-
ticity. The fourth sample value is the minimum slope magnitude for which the elasticity
bounds exist and are equal. This is the same elasticity estimate that one obtains with
the trapezoidal approximation made by Saez (2010).bunchbounds outputs elasticity
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bounds for three values of the slope: trapezoidal approximation, user-provided slope
magnitude, m@ ), and the maximum slope magnitude that results in a nite upper
bound.

2.2 The bunchtobit command

bunchtobit uses bunching, Tobit regressions, and covariates to point identify the elas-
ticity of a response variable with respect to changes in the slope of the budget set. The
syntax, options, and description of this command are as follows:

Syntax for bunchtobit

bunchtobit depvar indepvars if in  weight , kink( #) sO(#) s1(#)
binwidth( #) grid( numlist) nopic n_umiter( #)
savingtobit( lename|, replacd) verbose

depvar must be one dependent variable (the response in logs in many applications).

kink( # ) is the location of the kink point and must be a real number in the same units
as the response variable.

sO(#) is a real number. In many applications, it is the log of the slope before the kink
point.

s1(#) must be a real number that is strictly less sO(# ). In many applications, it is
the log of the slope after the kink point.

Entries for depvar, kink( # ), sO(# ), and s1(# ) are required, whereas options inside
the square brackets are not required.

Options for bunchtobit

indepvarsis avarlist of covariates. Heterogeneity is a linear function of these covariates
and an unobserved error that is normally distributed conditional on these covariates.

if and in restrict the working sample, like many other Stata commands.
weight follows Stata's weight syntax and only allows frequency weights fweight .

binwidth( # ) is the width of the bins for the histograms. It must be a strictly positive
real number. The default value is half of what is automatically produced by the
command histogram .

grid( numlist) is anumlist of integers from 1 to 99. The values in thenumlist correspond

~ to percentages of the sample that de ne symmetric truncation windows around the
kink point. The truncated Tobit model is estimated on each of these samples and also
the full sample so that the number of estimates is always one more than the number
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of entries in numlist. For example, if grid(15 82) , then bunchtobit estimates the
Tobit model three times using 100, 82, and 15 percent of the data around the kink
point. The default value for the numlist is 10(10)90, which provides 10 estimates.

nopic suppresses displaying graphs. The default is to display graphs.

numiter( # ) is the maximum number of iterations allowed when maximizing the Tobit
log likelihood. It must be a positive integer and the default is 500.

savingtobit( lename], replacd) saveslename.dta with Tobit estimates for each trun-
cation window. The lename.dta le contains eight variables corresponding to the
matrices that the code stores inr() . See Section 3.3 for more details. Useeplaceif
lename.dta already exists.

verbose displays detailed output from the Tobit estimation including iterations of max-
imizing the log likelihood. Non-verbose mode is the default.

Description for bunchtobit

The user enters the name of the response variable, the location of the kink point, and
the slopes before and after the kink point. Before applying the command, all of these
entries must be transformed into units that satisfy the DGP from Equation 1. For
example, in the tax setting of Saez (2010), dollars of taxable income and the dollar
value of the kink point are transformed by taking logs, and the slopes must be input as
the log of one minus the marginal tax rates.

bunchtobit estimates multiple mid-censored Tobit regressions using speci ed sub-
samples of the data. It starts with the entire sample, then it truncates the sample to
symmetric windows centered at the kink as speci ed by the user. The elasticity estimate
is plotted as a function of the percentage of data used in each truncation window. The
code also plots the histogram of the response variable along with the best-t Tobit
distribution for each truncation window.

The user has the option of entering covariates that help explain the unobserved
heterogeneity. Lemma 2 by Bertanha, McCallum, and Seegert (2021) demonstrates
that the distribution of the unobserved heterogeneity conditional on covariates does not
need to be normal for the Tobit estimates to be consistent. Consistency requires (i) the
unconditional distribution of heterogeneity is a semi-parametric mixture of normal dis-
tributions averaged over the included covariates; and (ii) the unconditional distribution
of the response variable predicted by the Tobit model ts the observed distribution of
the response variable well. If the user does not enter covariates, then the unconditional
distribution of heterogeneity needs to be normal.

3 Examples for bunchboundsand bunchtobit

In this section, we use simulated data to illustrate bunchboundsand bunchtobit . These
examples are motivated by the Earned Income Tax Credit that is investigated by Saez
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(2010) and Bertanha, McCallum, and Seegert (2021). As such, sometimes we refer to
the simulated outcome data as \earnings" and the slope of the incentive schedule as
\marginal tax rates." The units of the outcome also corresponds to log thousands of
dollars.

3.1 Simulated data

We consider a data generating process from Equation 1 with one kink ak =log (8) =
2:079 given by

8
2 05log(L3)+ n;; ifn; <log(8) 0:5log(13)

Yi= log (8); if log(8) 0:5log(:3) n; log(8) 0:5log(C9) (3)
" 0:5log(0:9) + n;; if n; >1log(8) 0:5log(0:9);

in which the elasticity is " = 0:5 and the slopes of the budget constraint to the left and
right of the kink are sp =log(1:3) = 0:2624 ands; =log (0:9) = 0:1054 (representing
tax rates of to = 0:3 andt; = 0:1). To be concrete, the income tax rate changes from
-30% to 10%, a 40 percentage point increase, and translates into a slope change in the
budget set of 0:368 = 10g(0:9) log(1:3). The elasticity of 0:5 means that taxpayers
respond to this marginal tax rate increase by decreasing their labor supply (and income)
by about 18.4% ( 0:184 = 0:368 0:5).

We assume that ability is a function of covariates and unobserved error given by
n =2 0:2xy; +2:5%Xy +0:4x3i + §, N (0;0:5). The covariates X3, X2, and Xz,
are correlated binary variables with properties given in Table 1.

Correlations

| Mean  Std. Dev. [ X1 X2 X3
X1 0.2 04 X1 1
X2 0.2 1
X2 0.5 0.5 ol o4 1
X3 0.3 0.46 X3 . .

Table 1: Covariates' proprieties

We simulate about one million weighted (100,000 unweighted) observations according
to Equation 3. Frequency weights are drawn from a standard uniform distribution and
we demonstrate how to employ weights throughout thebunching package.

In Figure 1, we graph the histogram of the one million observations in 100 bins. The
simulated outcome variable is bimodal due to the covariates, which highlights that the
unconditional distribution is not normally distributed. We graph the budget constraint
(solid black) in (log-income, log-consumption) space. That budget set has a kink, that
is, a change in slope from 1.3 to 0.9 at the value of 2.079 (solid red) for log-income. The
histogram in the same gure shows that individuals bunch exactly at the kink point
(sand bar).
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Figure 1: Histogram of simulated data

Bertanha, McCallum, and Seegert (2021) provide a complete description for how
utility maximization with heterogeneous preferences and income tax brackets results in
Figure 1, and we provide an overview here. The heterogeneity of agents' preferences is
captured by n , and each value ofn corresponds to a di erent indi erence curve (I.C.).
We graph two specic I.C.s, which correspond to the lower (dotted red) and upper
(dashed blue) numerical thresholds in Equation 3, whose theoretical counterparts are
n(k;"sp)= k "sgandn(k;";s1) = k "s; in Equation 1. Many I.C.s that are not
graphed touch the budget set at the kink. In fact, the mass point at the kink corresponds
to all agents whose preference heterogeneity) , lies in the bunching interval, that is,

n 2[log(8) 0:5log(L3);log(8) 0:5lo0g(0C:9)].

The simulated data also exhibit bunching exactly at the kink point. In many em-
pirical applications, however, the bunching mass is dispersed in a small interval near,
instead of exactly at, the kink. We provide a solution to this issue in Section 4.

3.2 Estimating elasticity bounds

We begin by estimating the elasticity bounds using the location of the kink, log (8) =
2:0794,k(2.0794) , tax rates on either side of the kink, sO = log(1.3)=0.2624 and
s1=log(0.9)=-0.1054 , and a choice of the maximum slopem(2). The bunching pack-
age and simulated data are available from the Boston College Statistical Software Com-
ponents (SSC) archive provided by Research Papers in Economics (RePEc).

. ssc install bunching
checking bunching consistency and verifying not already installed...
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installing into c:\ado\plus\...
installation complete.

. webuse set "http://ffmwww.bc.edu/repec/bocode/b/"
(prefix now "http://ffmwww.bc.edu/repec/bocode/b")
. webuse bunching.dta

. bunchbounds y [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) m(2)

Your choice of M:
2.0000

Sample values of slope magnitude M

minimum value M in the data (continuous part of the PDF):
0.0000

maximum value M in the data (continuous part of the PDF):
0.3879

maximum choice of M for finite upper bound:
1.5930

minimum choice of M for existence of bounds:
0.0090

Elasticity Estimates
Point id., trapezoidal approx.:

0.4894
Partial id., M = 2.0000 :
[0.3913 , +Inf]

Partial id., M = 1.59 :
[0.4055 , 0.9374]

The bunchbounds command estimates the bounds for the elasticity using di erent
slope values. First, the output shows that we entered a maximum slope of 2 and the
bounds for this slope are [B912 1 ]: Second, the command also estimates the bounds
using the maximum slope for a nite upper bound, when the maximum slope given
is greater than that value. In this case, the maximum slope for a nite upper bound
is 1.5933, resulting in the bounds [#0550:9353]. In both cases, the true elasticity
estimate of 0.5 is within these bounds. The output also gives the estimated minimum
and maximum slopes of the continuous portion of the probability density function of the
data. These slopes are 0 and 0.3879. The point-identi ed elasticity using the trapezoidal
approximation (which is the Saez (2010) estimator) of 0.4893 is also provided.

The non-parametric bounds are also graphed bypunchboundsfor di erent maximum
slope magnitudes of the unobserved heterogeneity PDF. These di erent slope magni-
tudes are plotted on the horizontal axis and the corresponding bounds are plotted on
the vertical axis. For this example, these are given in Figure 2a. This gure shows how
the upper bound, depicted as a dashed line, increases and the lower bound, depicted as
a solid line, decreases as the maximum slope increases. The vertical lines in Figure 2a at
0.01 and 1.59 denote the minimum slope for the existence of the bounds and the max-
imum slope for a nite upper bound, respectively. The point identi ed elasticity using
the trapezoidal approximation occurs where the bounds come together |the dash-dot
horizontal red line in Figure 2a.

The bunchboundscommand can also be combined with conditional statements that
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(a) All observations (b) Observations when x; =1

(c) Observations when x; =0 (d) Observations when x; =1 and x3 =0

Figure 2: Estimating elasticity bounds

restricts to subsamples of the data based on values of di erent covariates but cannot
otherwise be conditional on covariates. For example,

bunchbounds vy if x1==1 & x3==0 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) m(2)

estimates the bounds whenx; = 1 and x3 = 0. Restricting to subsamples when
X1 =1 or x; = 0 have similar syntaxes. The output from these commands (not shown) is
similar to the output without conditioning and the bound estimates for each subsample
are graphed in Figures 2b, 2c¢, and 2d. The bounds shift only slightly for each subsample
because the true elasticity is 0.5 for all subsamples and because the number of weighted
observations is large.

3.3 Semi-parametric point estimates of the elasticity

We estimate the elasticity using a truncated Tobit model that allows for covariates.
Truncation and covariates provide robust estimation that relies on semi-parametric as-



M. Bertanha, A. H. McCallum, A. Payne, N. Seegert 13

sumptions and does not require the unobserved heterogeneity PDF to be normally
distributed (Bertanha, McCallum, and Seegert 2021). We demonstrate the robustness
of this method by comparing estimates of the correctly speci ed model with estimates
from a misspeci ed model that still recover the true elasticity.

Correctly speci ed Tobit model

We begin by estimating the correctly speci ed model usingbunchtobit .

. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)

Obtaining initial values for ML optimization.

Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.

bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 .50938668 .00218386 0 0
2 90 .50756197 .00224619 0 0
3 80 .50898083 .00227815 0 0
4 70 .50808053 .00229178 0 0
5 60 .50848689 .00231719 0 0
6 50 .50660888 .00236933 0 0
7 40 .50975777  .00251876 0 0
8 30 .50959025 .00273068 0 0
9 20 .50463572  .00317585 0 0
10 10 .47913201  .00419053 0 0

The command estimates the elasticity for ten di erent subsamples by default. The
rst uses all the data, the second uses 90% of the data around the kink, the third uses
80% around the kink, and so on. Estimation proceeds in 10 percentage point intervals
declining down to the last subsample that uses only 10% of the data. Each subsample
is truncated symmetrically, centered around the kink, and includes the observations at
the kink. For the data simulated by Equation 3 and using the 90% truncated subsample
as an example, about 42.5% of the data are from below the kink, about 42.5% of the
data are from above the kink, and about 5% of the data are from the kink. The fraction
of data at the kink does not change with this type of truncation. For example, the 10%
subsample uses about 2.5% of the data above and below the kink and about 5% from
the kink.

Because the model is correctly speci ed, the estimates reported in thelasticity
column are always very close to the true value of 0.5 for any truncated subsample.
Standard errors in column st err are small because the simulated data includes one
million weighted observations. The standard errors increase as the percent of data used
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decreases because we use fewer observations. The table also reports the number of
covariates that were omitted because they were collinear in columr# coll cov and
when optimizing the log likelihood did not converge to a maximum in columnflag .

(a) 100% of the data used for estimation (b) 50% of the data used for estimation

(c) 20% of the data used for estimation (d) Elasticity by percent used

Figure 3: Correctly speci ed truncated Tobit estimates

Along with this numeric output, bunchtobit also produces a best-t graph for each
subsample and a graph of the elasticity estimate for all subsamples. Figures 3a, 3b,
and 3c display these best- t graphs for the 100%, 50%, and 20% truncation subsamples,
respectively. Each of these panels presents a histogram gf (sand colored bars) and the
estimate of the correctly speci ed and truncated Tobit model implied outcome variable
(black line). The model is correctly speci ed and so it ts the data well for all truncated
subsamples. Figure 3d plots the estimate (black line) and 95% con dence interval (gray
shading) for each truncated subsample corresponding to thelasticity = column. The
elasticity is the main parameter of interest but the covariate coe cients for the smallest
value in the numlist provided in grid( numlist) can be obtained by using theestimates
replay command. For example, truncating to 77% of the data for the correctly speci ed
model and then usingestimates replay provides the following output:
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. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)

> grid(77)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 2, 100% of data.
Truncation window number 2 out of 2, 77% of data.

bunchtobit_out[2,5]

data % elasticity std err # coll cov flag
1 100 .50938668 .00218386 0 0
2 77 .50849786 .00228162 0 0
. estimates replay
active results
Log pseudolikelihood = -.96353496 Number of obs = 770,197
(1) [eqx1l - [eq_rix1 =0
(2) [eq_lx2 - [eq_rx2 = 0
(3) [eq_lx3 - [eq_r]x3 =0
Robust
| Coefficient std. err. z P>|z| [95% conf. interval]
+
eq_| |
x1 | -.2876614 .0035942 -80.03 0.000 -.2947059  -.2806168
x2 | 3.541998 .0038313 924.49 0.000 3.534488 3.549507
x3 | .5509258 .0036639 150.37  0.000 5437448 .5581069
_cons | 3.022123 .0033913 891.13 0.000 3.015476 3.02877
+
eq_r |
x1 | -.2876614 .0035942 -80.03 0.000 -.2947059  -.2806168
x2 | 3.541998 .0038313 924.49 0.000 3.534488 3.549507
x3 | .5509258 .0036639 150.37  0.000 5437448 .5581069
_cons | 2.757436 .0035784 770.58  0.000 2.750422 2.764449
Ingamma |
_cons | .347303 .001056 328.87 0.000 3452331 .3493728
sigma | .7065912  .0014946 .7051302 .7080553
cons_| | 2.135406 .0030205 2.129486 2.141326
cons_r | 1.94838 .0033687 1.941778 1.954983
eps | .5084979 .0022816 .504026 .5129697

Olsen (1978) introduces a reparameterization that is discussed in (Hayashi 2000, Ch.
8.3) that ensures the log likelihood of a classical Tobit model is globally concave. That
reparameterization divides each coe cient of the covariates by the standard deviation
of the errors and we use the same reparameterization in our log likelihood. The results
output by estimates replay report these reparameterized coe cients instead of the
original coe cients. The reparameterization can be reversed by multiplying the repa-
rameterized coe cients by the standard deviation. For example, the estimate of the
coe cient on x, from Equation 3 can be recovered as:34 :71=2:51.
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The elasticity reported in column elasticity for the 77% subsample is from the
estimate eps in the active results  table shown by estimates replay . The rst
equation, eq.l , coe cient estimates on X1, X», and x3 are from the left-hand side of the
kink and are the same as the estimates from the second equatioeg.r, on the right of
the kink. These coe cients are constrained to be the same on the left and right sides
of the kink as re ected by the three constraints ( 1), ( 2) , and ( 3) , at the top of
the table and consistent with Equation 3. Because the model is correctly speci ed, the
covariate coe cient estimates are consistent and the estimates shown byestimates
replay are close to the (reparameterized) truth for each coe cient.

Incorrectly speci ed Tobit model

The correctly speci ed Tobit model from the previous section satis es the assumption
that ; is normal and therefore always ts the observed distribution ofy;. A misspeci ed
model that does not have normally distributed errors will not always t the distribu-
tion of y; well. However, Bertanha, McCallum, and Seegert (2021) prove that if the
Tobit model's best-t distribution matches the observed distribution of y;, then the
Tobit model estimates the elasticity consistently whether or not the distribution of ; is
normal. This section demonstrates this robustness property using a misspeci ed model
that does not have normal errors. Speci cally, we omit the covariatex, and estimate
the following model.

. bunchtobit y x1 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)

Obtaining initial values for ML optimization.

Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.

bunchtobit_out[10,5]
data % elasticity std err # coll cov flag

1 100 6426979  .00284279 0 0
2 90 7643775  .00347177 0 0
3 80 .74113379 .00338469 0 0
4 70 .68969718 .00316174 0 0
5 60 .61191988 .00282291 0 0
6 50 .52858458 .00248579 0 0
7 40  .51255963  .00253649 0 0
8 30 .51034751 .00273715 0 0
9 20 .50446083 .0031749 0 0
10 10 .48045869 .00528865 0 0

The misspeci ed model returns an elasticity estimate of 0.642 using 100% of the
data. This is a substantially biased estimate of the true elasticity of 0.5 and Figure 4a
shows that the misspeci ed model does not t well.
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We can truncate the sample to use data only local to the kink, however, to attenuate
the e ect of omitting X». In Bertanha et al. (2021, Lemma 2), we show that if the Tobit
distribution of the tted outcome (the black solid lines in Figures 4a to 4c) matches
the true distribution of the outcome variable (the sand bars in those gures), and the
unconditional distribution of n is a mixture of normals, then the elasticity estimated
by the Tobit is consistent for the true elasticity, regardless of whether the conditional
unobserved distribution, F,, jx , is normal.

Moreover, the smaller the truncation window, the easier it is to t the unconditional
distribution of the outcome variable with a Tobit, and the stronger is our conviction
that the estimate of the elasticity is consistent.

(a) 100% of the data used for estimation (b) 50% of the data used for estimation

(c) 20% of the data used for estimation (d) Elasticity by percent of data used

Figure 4: Incorrectly speci ed truncated Tobit estimates

Figure 4 demonstrates that using smaller truncation windows around the kink im-
proves the estimated distribution t. Figure 4b uses 50% of the data and ts much
better than the estimate that uses all of the data in Figure 4a. Figure 4c uses 20%
of the data local to the kink and ts even better than the 50% subsample. Figure 4d
shows that for all subsamples that use 50% of the data or less, we recover an estimate
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that is close to the true elasticity of 0.5. The largest truncation region for which the
estimated distribution ts the observed distribution is context speci c. For the example
given in Figure 4, using 50% of the data around the kink is the largest subsample of
data that provides a good t to the outcome distribution. But for other datasets, the
largest truncation region that ts the outcome distribution well could use any fraction

of the data, and could be very small indeed.

4  Friction errors

Many datasets have friction errors which are de ned as when the bunching mass is
dispersed in a small interval near, instead of exactly at, the kink. Friction errors can
be caused by measurement error, optimizing frictions (Chetty et al. 2011), or other
distortions. When friction errors are present, they must rst be ltered out before a
bunching estimation method can be applied.

The procedure implemented bybunchfilter  is a practical way of Itering out fric-
tion errors. It works by tting a polynomial to the empirical CDF of the response vari-
able with friction errors, yfric;. It excludes observations in a speci ed interval around
the kink during estimation and allows the intercepts to di er to the left and right of
that interval. The estimated CDF is then extrapolated into the excluded interval, which
constitutes an estimate of the CDF of the response variable without friction errors,y;.
The inverse of the extrapolated CDF evaluated at each observation produces the lItered
variable and the di erence between the intercepts at the kink provides the estimate of
the bunching mass.

This ltering method produces consistent estimates of the distribution of the re-
sponse variable without frictions under three conditions. First, the friction error, €,
must be independent and identically distribute (iid ) with known and bounded support.
We emphasize that it is not necessary for the friction error to be mean zero, or for the
distribution of friction error, f (&), to be symmetric or parametric. Second, friction
errors must only a ect bunching individuals. Third, the CDF of y; without friction
error must equal a polynomial in a known neighborhood of the kink that is bigger than
the support of the friction error.

4.1 The bunch Iter command

bunchfilter  removes friction errors from data generated by a mixed continuous-discrete
distribution with one mass point plus a continuously distributed friction error. The dis-
tribution of the data with friction error is continuous and does not have a mass point.
This type of data is common in economic bunching applications. For example, the dis-
tribution of taxable income usually has a hump around the kink where the marginal tax
rate changes, instead of a mass point at the kink. The syntax, options, and description
of this command are as follows:
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Syntax for bunchfilter

bunchfilter  depvar if in  weight , kink( #) deltam( #) deltap( #)
generate( varname) binwidth( # ) nopic pct obs(#) pol order( #)

depvar must be one dependent variable (the response in logs in many applications).

Kink( # ) is the location of the kink point and must be a real number in the same units
as the response variable.

deltam( # ) is the distance between the kink point and the lower bound of the support
of the friction error to be Itered. It must be a real number in the same units as the
response variable.

deltap( #) is the distance between the kink point and the upper bound of the support
of the friction error to be Itered. It must be a real number in the same units as the
response variable.

generate( varname) generates the ltered variable with a user-speci ed name ofvar-
name.

Entries for depvar, kink( # ), deltam( #), deltap( # ), and generate( varname) are
required, whereas options inside the square brackets are not required.

Options for bunchfilter

if and in restrict the working sample, like many other Stata commands.
weight follows Stata's weight syntax and only allows frequency weights fweight .

binwidth( # ) is the width of the bins for the histograms. It must be a strictly positive
real number. The default value is half of what is automatically produced by the
command histogram .

nopic suppresses displaying graphs. The default is to display graphs.

pct obs(# ) for better t, the polynomial regression uses observations in a symmetric
window around the kink point that contains pct obs(# ) percent of the sample. It
must be a positive integer between 1 and 99 and the default is 40.

polorder( #) order of polynomial for the Itering regression. It must be a positive
integer between 1 and 7 and the default is 7.

Description for bunchfilter

The user enters the variable to be ltered (for example, the log of income), the location
of the kink, and size of a region around the mass point that contains the hump (in other
words, kink - deltam, k _ink + deltap ). bunchfilter  ts a polynomial regression

to the empirical CDF of the variable observed with error. This regression excludes
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points in the hump window and has a dummy for observations on the left or right of
the kink. The tted regression is used to predict values of the empirical CDF in the
hump window with a jump discontinuity at the mass point. The lItered variable is then
recovered from the inverse of the predicted CDF evaluated at the empirical CDF value
for each observation in the sample.

This procedure works well for cases where the friction error has bounded support
and only a ects observations that would be at the kink in the absence of error. A proper
deconvolution theory still needs to be developed for a Itering procedure with general
validity.

4.2 Example for bunchfilter

We show how to remove the friction errors as a precursor to estimating the relevant
elasticity in this example. We simulate the outcome variable with friction errors as

yfric; = yi + el (yi =log (8)) ; (4)

in which y; is from Equation 3,  areiid truncated normal from

f(e)= (g)=[ (log(l :1) (log(0 :9))], the standard normal PDFis (),and ( )

is the standard normal CDF. The errors have known and bounded support [log (®) ; log (1:1)],
which ensures frictions never add to or subtract fromy; by more than log 10 percent.
The three conditions needed forbunchfilter  to consistently estimate y; discussed in
Section 4 are satis ed by Equation 4.

We generate the ltered variable, yfiltered , and Figure 5 by applying bunchfilter
to the outcome variable with friction errors using the following command (output not
shown)

. bunchfilter yfric [fw=w], kink(2.0794) deltam(0.12) deltap(0.12) generate(yfiltered)
> binwidth(0.084) pctobs(30)

We exclude log 12 percent below the kink,deltam(0.12) , and log 12 percent,
deltap(0.12) , above the kink because we know this excluded region will capture the
support of the friction errors because the example frictions in Equation 4 never add to
or subtracts from y; by more than log 10 percent.

Without the friction errors, 5.17% of the responses bunch at the kink in the simulated
data from Equation 3. Including friction errors lowers this fraction to zero because no
observation are exactly at the kink in Equation 4. After removing the frictions with
bunchfilter , the ltered data has 5.15% of the responses at the kink. The histogram
of yfric, is shown in Figure 5a. The un Itered data (sand colored bars) exhibits di use
bunching around the kink point. The lItered data is saved in the variable yfiltered
by invoking the option generate(yfiltered) . The histogram for the ltered data is
depicted in the (black bars) with evident reassignment of original dispersed observations
around the kink to the kink point exactly. This reassignment can also be seen in the
contrast between the Itered and un ltered CDFs in Figure 5b. Both of these gures
are produced by thebunchfilter = command.
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